Bronchopulmonary dysplasia (BPD) is an important cause of mortality and morbidity in premature infants. Pathogenesis of BPD is not known, inflammation appears to play the central role. Many factors including: prematurity, Respiratory Distress Syndrome, mechanical ventilation, oxygen exposure, nutrition, inflammation and infections may contribute to the development of BPD. Genetic susceptibility may also play a role in BPD. Studies of multiple births and BPD show that genetic factors have an important role in developing BPD. BPD in one twin was a high predictor of BPD in the other twin. Genetic susceptibility may be influenced by the expression of the genes that are critical for surfactant synthesis, vascular development and regulation of inflammation. Many genes suspected of developing BPD have been studied but with no conclusive results.

The classic BPD or the old BPD is characterized by bronchial and bronchiolar mucosal metaplasia and hypertrophy, interstitial edema, an increase in fibrous tissue with focal thickness of basement membrane, peribronchial muscular hypertrophy, a decrease in the branching of pulmonary vessels and a decrease in alveolar number. The most obvious abnormality is tissue destruction and fibrosis.

In the new BPD there is a decrease in the number of alveoli with an increase in alveolar diameter and disruption of the collagen around the saccules. The most obvious abnormality in the lungs of infants with the new BPD is the arrest of alveolarization. In animal models, over-expression of pro-inflammatory cytokines such as TNF-α, IL-6, IL-8, IL -1, IL-13 during a period of alveolarization causes an increase in the size of alveoli and a decrease in their number. Hypoxia, hyperoxia and ventilation can also impair alveolarization. Antenatal, post-natal corticosteroids and deficit in nutrition can cause lung damage and make the lungs more sensitive to oxidant damage.

Bronchodilators

Bronchodilators have been used in the management of infants with BPD for a long time. The rationale for using bronchodilators in infants with BPD includes: peribronchial smooth muscle hypertrophy, airway reactivity, airway hyperactivity, and response to bronchodilators in older children with BPD and family history of severe asthma was more likely associated with premature infants with BPD. Abnormality of airway structure and function persist during long-term follow-up, which leads to recurrent respiratory hospitalizations, exercise intolerance, abnormal respiratory functions and increased airway resistance in infants with BPD.

β 2 Agonists

Mechanism of action: β 2 agonists act by direct relaxation of the bronchial smooth muscles by activation of Gs adenyl cyclase cyclic AMP. This consequently reduces smooth muscle tone, increases the conductance of Ca2+ leading to smooth muscle relaxation. Stimulation of β-agonists receptors inhibits the function of...
Pediatrix Medical Group recently reached another milestone in its history; its clinical data warehouse grew to more than 600,000 total patient outcomes, representing 12 million patient days. Drawing on this extensive data and collective experience, our neonatologists continue to work in a collaborative environment, exchanging ideas, introducing continuous quality improvement initiatives and launching clinical research studies on a national scale.

We thank our physicians for their ongoing dedication and unwavering commitment to improving patient care and advancing evidence-based medicine.

Please contact us to learn about neonatology positions in:

- Oceanside, CA
- Atlanta, GA
- Albuquerque, NM
- Nashville, TN
- Baton Rouge, LA
- Houston, TX
- Hammond, LA
- Spokane, WA
- Lexington, KY
- West Texas

800.243.3839, extension 6512
fax 800.765.9859 physician_recruit@pediatrix.com

To learn more about positions available in other locations, please visit our Web site at www.pediatrix.com/neojobstoday. Pediatrix Medical Group is an Equal Opportunity Employer.
Pathogenesis of BPD

Before Birth
- Infection
- Chorioamnionitis

During Resuscitation
- Mechanical ventilation
- Oxidative stress

During NICU Stay
- Mechanical ventilation
- Oxidative stress
- Infection
- Low nutrition

Inflammation
- LTB4, IL1, IL-6, IL-8, IL 16 C5a, PAF, PG

Tissue Destruction, Fibrosis
- Alveolarization
- Vascularization
- Remodeling

Old BPD
New BPD

Anticholinergics

Mechanism of action: Muscarinic M3 receptor is the cholinergic receptor that results in bronchial smooth muscle contraction. Anticholinergic agents inhibit bronchoconstriction and mucus secretion. Ipratropium blocks all 5 muscarinic receptors resulting in a decrease in the formation of cyclic guanosine monophosphate (cGMP). Bronchodilatation effect by anticholinergic is usually less intense and slower than the effect of adrenergic drugs.11, 19

Pharmacology: Atropine is absorbed through the gastrointestinal tract and from the mucous membranes; it crosses the blood brain barrier and is excreted in the urine. Serum half-life is 3 hours in adults and longer in children. Ipratropium is a non-selective muscarinic antagonist. It does not diffuse into the blood or cross the blood-brain barrier from an inhaled dose, thereby preventing systemic and central nervous system side-effects. Ipratropium is considered a short-acting bronchodilator. Its peak effect is 1-2 hours, and duration of its action is 4-6 hours.11, 19

Adverse effects: Dose dependent adverse effects are dry mouth and skin, tachycardia, problems with swallowing and micturition, flushing of skin and mental changes.11, 19

Studies: When ipratropium was combined with β 2 agonist, its action was prolonged and it was more effective.19, 20 In infants with BPD, atropine sulfate in a dose 0.05 mg increased dynamic compliance.21 Ipratropium in ventilator-dependent neonates with BPD showed decrease in airway resistance and

Adverse effects: Adverse effects depend on dose, selectivity, and route of administra- tion. Tachycardia, palpitation, cardiac arrhythmia, tremor, CNS stimulation occur due to hyper-excitability. Other effects are increased serum glucose and decreased serum potassium. Long-term use of agonists can cause desensitization. β receptors in bronchial smooth muscles are usually resistant to desensitization but receptors on mast cells and lymphocytes are rapidly desensitized.11

Studies: β-agonists decrease airway resistance, increase tidal volume, increase airway compliance and improvement in lung mechanics in infants with BPD.7, 12, 14, 15, 16 In a study by De Boeck K, et al,17 salbutamol and ipratropium were used in 52 patients at 1 year of age, who had been ventilated after birth. The bronchodilatatory effect was not uniform, and patients had different response. The study concluded that routine use of bronchodilators seemed unnecessary. The Cochrane database of systematic reviews concluded that there is no evidence at the present time that bronchodilators are useful in the treatment or prevention of BPD in preterm infants.18

Anticholinergics

Mechanism of action: Muscarinic M3 receptor is the cholinergic receptor that results in bronchial smooth muscle contraction. Anticholinergic agents inhibit bronchoconstriction and mucus secretion. Ipratropium blocks all 5 muscarinic receptors resulting in a decrease in the formation of cyclic guanosine monophosphate (cGMP). Bronchodilatation effect by anticholinergic is usually less intense and slower than the effect of adrenergic drugs.11, 19

Pharmacology: Atropine is absorbed through the gastrointestinal tract and from the mucous membranes; it crosses the blood brain barrier and is excreted in the urine. Serum half-life is 3 hours in adults and longer in children. Ipratropium is a non-selective muscarinic antagonist. It does not diffuse into the blood or cross the blood-brain barrier from an inhaled dose, thereby preventing systemic and central nervous system side-effects. Ipratropium is considered a short-acting bronchodilator. Its peak effect is 1-2 hours, and duration of its action is 4-6 hours.11, 19

Adverse effects: Dose dependent adverse effects are dry mouth and skin, tachycardia, problems with swallowing and micturition, flushing of skin and mental changes.11, 19

Studies: When ipratropium was combined with β 2 agonist, its action was prolonged and it was more effective.19, 20 In infants with BPD, atropine sulfate in a dose 0.05 mg increased dynamic compliance.21 Ipratropium in ventilator-dependent neonates with BPD showed decrease in airway resistance and

numerous inflammatory cells, including: mast cells, eosinophils, neutrophils and lymphocytes through cascade that inhibits the release of inflammatory mediators and cytokines.11

Pharmacology: Short-acting β 2 agonist include albuterol, levalbuterol, metaproterenol, terbutaline and pirbuterol. Albuterol, metaproterenol and terbutaline are available in oral form, but due to increased side effects, inhalation is preferred. By inhalation treatment, the onset of action occurs within 1-5 minutes and the effects last 2-6 hours.11

Long acting β 2 agonists such as salmeterol (Serevent) and formoterol (Foradil) have very high selectivity for β 2 receptors. They are not commonly used in infants.

Adverse effects: Adverse effects depend on dose, selectivity, and route of administra-
Methylated xanthines

<table>
<thead>
<tr>
<th>Drug</th>
<th>Loading Dose</th>
<th>Maintenance Dose</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeine citrate</td>
<td>20-25 mg/kg</td>
<td>5-10 mg/kg every 24 hours</td>
<td>IV/PO</td>
</tr>
<tr>
<td>Aminophylline</td>
<td>5-8 mg/kg</td>
<td>1.5-3 mg/kg/day divided every 8-12 hours</td>
<td>IV/PO</td>
</tr>
<tr>
<td>Theophylline</td>
<td>5-8 mg/kg</td>
<td>3-6mg/kg/day divided every 6-8 hours</td>
<td>PO</td>
</tr>
</tbody>
</table>

These doses are used for management of apnea of prematurity. Changing aminophylline from IV to PO increase the dose by 20%. No need to adjust theophylline.

Diuretics

<table>
<thead>
<tr>
<th>Drug</th>
<th>Site of Action</th>
<th>Route</th>
<th>Onset</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furosemide</td>
<td>Loop diuretic</td>
<td>IV</td>
<td>15-30 min</td>
<td>1 mg/kg/dose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO</td>
<td>30-60 min</td>
<td>1-3 mg/kg/dose</td>
</tr>
<tr>
<td>Hydrochlorothiazide</td>
<td>Distal tubule</td>
<td>PO</td>
<td>1-2 hrs</td>
<td>2-4 mg/kg/day</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Aldosterone antagonist</td>
<td>PO</td>
<td>3-5 days</td>
<td>1-5 mg/kg/day</td>
</tr>
</tbody>
</table>

Mechanism of action: These are competitive nonselective phosphodiesterase inhibitors and prevent breakdown of cyclic AMP and cyclic GMP. This leads to raised intracellular AMP and cGMP. They also inhibit TNF-alpha and leukotriene synthesis, thereby reducing inflammation and innate immunity. Methylxanthines are nonselective adenosine receptor antagonists. Adenosine can cause broncho-constriction and potentiate immunologically induced mediator release from lung mast cells. Inhibition of this action will cause bronchodilatation. Methylxanthines also inhibit sleepiness-inducing adenosine and lead to improved respiratory drive.

Methylxanthines: Caffeine aminophylline, theophylline and pentoxyfilline.

Mechanism of action: These are competitive nonselective phosphodiesterase inhibitors and prevent breakdown of cyclic AMP and cyclic GMP. This leads to raised intracellular AMP and cGMP. They also inhibit TNF-alpha and leukotriene synthesis, thereby reducing inflammation and innate immunity. Methylxanthines are nonselective adenosine receptor antagonists. Adenosine can cause broncho-constriction and potentiate immunologically induced mediator release from lung mast cells. Inhibition of this action will cause bronchodilatation. Methylxanthines also inhibit sleepiness-inducing adenosine and lead to improved respiratory drive.

Mechanism of action: These are competitive nonselective phosphodiesterase inhibitors and prevent breakdown of cyclic AMP and cyclic GMP. This leads to raised intracellular AMP and cGMP. They also inhibit TNF-alpha and leukotriene synthesis, thereby reducing inflammation and innate immunity. Methylxanthines are nonselective adenosine receptor antagonists. Adenosine can cause broncho-constriction and potentiate immunologically induced mediator release from lung mast cells. Inhibition of this action will cause bronchodilatation. Methylxanthines also inhibit sleepiness-inducing adenosine and lead to improved respiratory drive.

Methylxanthines are aborbed rapidly after oral or parenteral administration. Maximum plasma concentration for caffeine is achieved within 1 hour and for theophylline within 2 hours. Serum half-life of methylxanthines is decreased with advance postmenstrual age in preterm infants. The average half life for caffeine is 50 hours and for theophylline is 20-36 hours. Metabolized mainly in the liver less than 15% of theophylline and 5% of caffeine is recovered from the urine. Metabolism of methylxanthines is affected by liver disease, heart failure and acute pulmonary edema. Citimidine and erythromycin increase their half-life while phenytoin and barbiturate increase clearance.

Adverse effects: Toxicity with theophylline is more common than with caffeine. Side effects are usually associated with plasma level over 20 µg/ml: nausea, vomiting, headache, diarrhea, tachycardia, irritability. At high levels, the patient may develop hyperglycemia, hypokalemia, hypotension, cardiac arrhythmias, seizure, brain damage and death.

Studies:

Theophylline: Rooklin et al in 1979 showed that theophylline increased lung compliance and decreased airway resistance in infants less than 30 days old. Kao et al showed that oral theophylline improved dynamic compliance, airway resistance, maximal expiratory flow at functional residual capacity and decreased time constant. When diuretics and theophylline were used an additive effect was noted.

Caffeine: Davis et al demonstrated an improvement in minute ventilation, an increase in tidal volume, a decrease in lung resistance and improved lung compliance one hour following 10 mg/kg of caffeine. In a randomized study by B. Schmidt et al, infants who received caffeine were less likely to use oxygen at 36 weeks postmenstrual age. In addition, ventilator us was discontinued one week earlier than infants who received a placebo. Capers CC et al, showed that theophylline at a serum levels less than 10 is not beneficial as an aid to wean the ventilator.

Pentoxifylline: Lauterbach R et al. (32) studied 150 low birth weight infants who required oxygen by the fourth day of life. The infants were randomized in three groups: placebo, intravenous 0.25 mg/kg dexamethasone every 12 hours on three consecutive days and nebulized pentoxifylline every 6 hours on three consecutive day in a dose of 20 mg/kg when infants who were breathing spontaneously or 10 mg/kg when they needed ventilatory support. Authors concluded that nebulized pentoxifylline reduces the risk of BPD and may be a potential alternative to steroids in the prevention BPD.

Diuretics

Furosemide is the most commonly used diuretic. It is a potent and rapid acting loop diuretic. It can be used orally and intravenously. The main benefit of the intravenous route is a quick response.

Mechanism of Action: At the ascending loop of Henle, furosemide inhibits active reabsorption of chloride resulting in lower sodium and water reabsorption. It also acts against antiuretic hormones, and increases urine aldosterone excretion. Furosemide decreases left ventricular filling pressure by increasing venous capacitance. Furosemide helps in chronic lung disease by both diuretic and vasculature effects.

Adverse effects: Main adverse effects of chronic furosemide therapy are hypercalciumia, nephrocalcinosis and hypochloremia. Electrolytes should be monitored carefully. Oto toxicity is related to plasma concentration and is usually reversible after cessation of therapy. Other side effects include: osteopenia, cholelithiasis, displacement of bilirubin and hyperparathyroidism.

According to Cochrane review in preterm infants < 3 weeks of age with BPD, intravenous furosemide administration has either inconsistent effects or no detectable effect. In infants less than 3 weeks of age with BPD, a single intravenous dose of 1 mg/kg of furosemide transiently improves pulmonary mechanics. Chronic enteral or intravenous furosemide administration improves both oxygenation and pulmonary mechanics. The Cochrane review concluded that there is little evidence to support any benefit of furosemide administration with respect to ventilatory support, length of hospital stay, survival or long-term outcome. Accordingly, routine or sustained uses of systemic loop diuretics in infants with BPD cannot be recommended.

Inhaled furosemide has been shown to transiently improve pulmonary function. No
long-term outcomes have been studied. More trials are needed before this delivery method can be recommended for routine use.

Thiazide Diuretics

Thiazides work by inhibiting sodium reabsorption in the distal tubule. In contrast to furosemide, thiazides decrease calcium excretion.

Potassium Sparing Diuretic

Spironolactone is a competitive antagonist of aldosterone. It is a weak diuretic and is usually given in combination with thiazides.

There are very few randomized control trials. By Cochrane reviewer’s opinion, in infants less than 3 weeks of age with BPD, chronic administration of thiazide and spironolactone improves lung compliance at four weeks of treatment and reduces need for furosemide. Only one study showed long-term benefits such as decreased rates of death and artificial ventilation.

Corticosteroids

As anti-inflammatory agents used widely in treatment of BPD, their action is mediated by annexin-1 synthesis. Corticosteroids inhibit two main inflammatory products prostaglandins and leukotrienes. Through suppression of cyclooxygenase I and II, corticosteroids potentiate the anti-inflammatory effect.

Through decrease of inflammatory mediators such as IL1, α1 protease inhibitors, LTβ4 corticosteroids reduce pulmonary edema. Steroids enhance surfactant production and stimulate antioxidant production.

Side effects of systemic corticosteroids administration include: hypertension, growth suppression, glucose intolerance, alkalosis, pituitary-adrenal suppression, increase risk for gastrointestinal bleeding and perforation, vomiting, increase risk for osteopenia and pathological fracture, immune suppression and increase risk of neurodevelopmental dysfunction. For details of postnatal use and increase risk of neurodevelopment, immune suppression and increase risk of neurodevelopmental dysfunction. For details of postnatal use and increase risk of neurodevelopmental dysfunction.

Inhaled Nitric Oxide (INO)

INO decreases pulmonary vascular resistance and improves oxygenation. It is proposed that INO will improve oxygenation, improve ventilation and will decrease respiratory support. Side effects include methemoglobinemia and direct pulmonary injury if excessive INO is used.

Studies on INO were done with different doses, started at different ages, different durations of treatment, and in infants whose characteristics were different among the studies. INO was approved by FDA to term and near-term infants. AAP Committee on Fetus and Newborn recommended that centers that provide INO therapy should provide comprehensive long-term medical and neurodevelopment follow-up and should establish prospective data collection for treatment time, course, toxic effects, treatment failure, use of alternative therapies, and outcomes.

A systematic review which included 11 studies failed to show a significant benefit of INO on BPD. Cochrane database for systematic review by Keith J Barrington in 2006 concluded: INO as rescue therapy for the very ill ventilated preterm infant does not appear to be effective, and may increase the risk of severe IVH. Later use of INO to prevent BPD also does not appear to be effective. Early routine use of INO in mildly sick preterm infants may decrease serious brain injury, and may improve survival without BPD. Further studies are needed.

Antioxidants

Free radical and oxidant stress cause damage to DNA, cell membrane, protein and lipids. Free radicals are produced by many mechanisms such as mitochondrial electron transport chain, prostaglandin metabolism, ischemia-reperfusion, hypoxia, neutrophil and macrophage activations, and endothelial cell hypoxanthine-xanthine oxidation.

There is a balance between free radical production and clearing by the antioxidant system. The antioxidant defense system includes enzymatic components such as Co-Zn superoxide dismutase (SOD) glutathione peroxidase, and a non-enzymatic components such as glutathione, selenium, zinc, vitamin E and vitamin C. Preterm infants have an immature antioxidant defense system, and are highly exposed to oxidant stress, therefore prone to get tissue damage. Many antioxidant agents have been tried to treat or prevent BPD in newborn. These include:

Vitamin E: Tocopherol is a fat-soluble, anti-oxidant and it decreases reactive oxygen species. The American Academy of Pediatrics Committee on Nutrition has recommended daily supplementation of 5-25 IU of vitamin E in preterm infants. Supplementing very low birth weight infants with vitamin E as an anti-oxidant agent has been proposed for preventing or limiting retinopathy of prematurity, intracranial hemorrhage, and chronic lung disease. In clinical trials, vitamin E supplementation did not affect the incidence of BPD. Vitamin E supplementation significantly increased the risk for necrotizing enterocolitis and sepsis.

Superoxide dismutase: Intra-tracheal administration of CuZn SOD in preterm infants did not reduce BPD. It decreased the need for asthma medications, emergency department visits and hospitalizations during the one year follow-up. Rosenfeld et al showed that radiologic evidence, clinical signs of BPD and days of CPAP were less in patients treated with SOD, and no side effects were observed. Cochrane database concluded that there is insufficient evidence that superoxide dismutase is efficient in preventing chronic lung disease of prematurity, but it is well-tolerated, and has no serious adverse effects.

N acetyl cysteine (NAC): NAC is a precursor of cysteine, which is essential in Glutathione synthesis. Glutathione is a non-enzymatic antioxidant. NAC treatment in preterm infants did not prevent BPD or death, and did not improve lung function at discharge from the hospital.

Allopurinol: Allopurinol is inhibitor of xanthine oxidase, an enzyme which generates superoxide radicals. It did not decrease BPD in preterm infants of 24-32 weeks' gestation.

Metaltonin: Metaltonin is a hormone that is found in all biological organisms, and is a potent free radical scavenger. Melatonin treatment reduced the proinflammatory cytokines (IL-6, IL-8 and tumor necrosis factor (TNF)-alpha), and improved the clinical outcome in mechanically ventilated newborns with respiratory distress.

Other Pharmacological Agents Used in Some Studies

Vitamin A: Vitamin A is very important for the health of epithelial tissues. It reduces ciliary loss, and is associated with increased alveoli. In animals studies, vitamin A deficiency has been associated with necrotizing tracheobronchiolitis and squamous metaplasia the changes akin to BPD. Very low birth weight infants are known to have low vitamin levels.

There have been several studies looking at vitamin A in the prevention of BPD. The largest study by Tyson et al showed significant decrease (from 62% to 55%) in combined outcome of death or chronic lung disease. Meta-analysis also revealed similar results. A follow-up study did not show any untoward outcome at 18 to 22 months of age. Many units routinely use vitamin A for prevention of BPD. Five thousand IU of Vitamin A has to be given by tri-weekly intramuscular injections for four weeks. In one study it was given by oral route. Intravenous emulsion preparation needs to be studied by randomized control trials.

Cimetidine: In animal studies, lung injury as result of induction of cytochrome P450 by oxygen exposure may result in the release of free radical oxidants and arachidonic acid metabolites, that can be re-
duced by cimetidine. In study by Cotton et al of infants weighing less than 1250 grams who were mechanically ventilated and required oxygen, Cimetidine had no significant effect on the severity of respiratory insufficiency at 10 day postnatal age, and did not affect the tracheal aspirate levels of inflammatory markers or arachidonic acid metabolites.

Azithromycin: A macrolid antibiotic, azithromycin, acts as a free radical scavenger, inhibits cytokines, and inhibits neutrophil chemotaxis. In a study by Ballard HO et al on extremely premature infants requiring mechanical ventilation, azithromycin did not affect mortality, incidence of BPD and days on ventilator.

Alpha-1 protease inhibitor (A1PI): Matrix Metalloproteinase is a member of a family of extracellular enzymes that are essential in proteolysis activity against extra cellular matrix proteins such as collagen, elastic lamina and fibronectin. These enzymes are produced by variety of cells such as fibroblasts, osteoblasts, macrophages, monocytes and neutrophils. These enzymes are essential in growth, tissue remodeling, angiogenesis and wound healing. If the balance between activation and inhibition of these enzymes is disturbed, many pathological conditions can occur such as bronchopulmonary dysplasia. In a study by Stiskal JA et al, the incidence of CLD in survivors was lower in infants treated with intravenous A1PI as compared with a placebo group, but the difference was not statistically significant. The incidence of pulmonary hemorrhage was lower in the treated group.

Thyroxine, did not reduce the incidence of BPD. Oestradiol and progesterone hormonal replacements were studied in 83 infants, but did not show decrease in incidence of BPD.

Conclusions

In the past two decades, there were many medications being used for the treatment or prevention of BPD. Most of the results were derived from the Cochrane database analysis. Many of these analyses, however, are not conclusive and sometimes are difficult to interpret, because each of the clinical trials was designed differently, not only in terms of time in which the therapy was initiated, but also in terms of dosage and duration of therapy. Nevertheless, the information is valid for reference; but in many occasions, management decisions may have to be made based on individual clinical experiences.

Based on current published literature and our own experiences, we would like to make the following conclusions:

1. Appropriate respiratory care is still the most promising and safest way to treat and prevent BPD. In this regard, training more nurses and letting them use one type of respirator and/or CPAP is essential to avoid lung injury and prolonged intubation.

2. Diuretics, bronchodilators and methylxanthines can be used as adjunctive therapy if needed.

3. Systemic dexamethasone therapy should be reserved only for those infants who are in intractable respiratory failure, expected to have poor neurodevelopment outcome and/or who would otherwise die without therapy. A short course of 0.1-0.2 mg/kg /dose every 12 hours for 3-5 days may be beneficial. Vitamin A, Hydrocortisone, SOD, inhaled NO and intratracheal instillation of budesonide using surfactant as vehicle all need more studies and/or longer follow-up.

Reference

18. Ng G. Bronchodilators for the prevention and treatment of CLD in preterm infants.
53. Rosenfeld W, Evans H, Concepcion L, Jhaveri R, Schaeffer H, Friedman A. Prevention of bronchopulmonary dys-

Acknowledgement: This paper is supported in part from grant NHRI-EX98-9818PI, Taiwan.

Manhal Khiffeh, MD, MPH
Attending Neonatologist, John H Stroger Hospital of Cook County
Assistant Professor of Pediatrics, Rush Medical School

Vish Agrawal, MD
Attending Neonatologist
John H Stroger Hospital of Cook County
Assistant Professor of Pediatrics, Rush Medical School

Corresponding Author
Tsu F. Yeh, MD
Senior Attending Neonatologist
John H. Stroger Hospital of Cook County
Distinguished Professor of Pediatrics, China Medical University, Taichung, Taiwan

Correspondence address:
Tsu F. Yeh, MD
John H. Stroger Hospital of Cook County
NICU 4Th FL
1901 W Harrison St.
Chicago IL 60612 USA

Department of Pediatrics
China Medical University
91 Hsieh Shih St,
Taichung, Taiwan

Do you or your colleagues have interesting research results, observations, etc. that you would like to share with the neonatology community?

Submit a brief summary of your proposed article to: Article@Neonate.biz
Global Neonatology Today: A Monthly Column

By Dharmapuri Vidyasagar, MD, FAAP, FCCM

Tracking the progress of Millennium Development Goals (MDG)

The progress in achieving goals of MDG are being closely monitored world-wide. There is intense effort by governments and NGOs (non-governmental organizations) around the world to meet the MDGs by the target date of 2015. There is a MDG clock ticking (www.un.org/millenniumgoals/). Although there is noticeable progress in some countries, others are lagging behind. Let us see how the progress is being made.

MDG GOAL # 1:

The MDG # 1 goal calls for eradicating extreme poverty with the proportion of people whose income is less than $1/day by year 2015. It also aims at increasing employment for women and young people, and reduction of hunger by 50%.

Why is this goal important?

Poverty affects human health many ways. Poverty is proxy to poor nutrition. Poor nutrition affects health. Poor nutrition combined with poverty leads to poor human development. Hunger is the extreme manifestation of poverty, and poverty affects the most vulnerable populations - women and children. Over one billion people in the world are estimated to suffer from hunger. Worldwide every day, 16,000 children die of hunger-related problems (One death every five seconds).

To improve the health of women and children, the vicious cycle (see below) of poverty and hunger must be interrupted.

The Vicious Cycle of Poverty

- Poverty
- Hunger
- Poor Nutrition
- Poor Income
- Poor Health
- Poor Human Development

How is poverty defined?

In 1990, the poverty line was set at earning <$1/day. It was estimated that global population over over two billion lived below this poverty line. The World Bank, based on the data of 2005, re-calibrated poverty line to those who earn <$1.25/day. This translates to less than what we in the developed countries spend on a cup of regular coffee!

What are the global trends of poverty?

It's now estimated that there are more poor and extremely poor people, and that the incidence of poverty reaches further into middle-income countries. By the new measurements, 1.4 billion people are living in extreme poverty. More than one-quarter of the population of developing countries live in poverty. But there is a silver lining: some countries have reduced poverty in their population.

The information included here is based upon multiple published and website sources, including: WHO, UNICEF and World Bank Reports.

Reach BC / BE Neonatologists and Perinatologists

Recruitment advertising includes a full color ad in the print and electronic version of Neonatology Today. Available in 1/3, 1/2, 2/3 and full pages sizes. We will even create the ad for you at no extra charge.
Retinopathy of prematurity (ROP) management has progressed greatly over the last decade and a half, now yielding an anatomic success rate of greater than 98%.1-3 Much of this success, however, is based on the timely and accurate screening of infants at risk for retinopathy of prematurity. It has become a great problem in the United States to find doctors who are trained and willing to screen for retinopathy of prematurity and insurance companies that are willing to insure those who do the ROP screening.4 For the past two decades, screening for retinopathy of prematurity has been documented by drawings in the infant’s medical record. These handwritten drawings are used in addition to the physician’s memory to gauge any change between previous and current examinations. In addition, even though they did not make the original drawings, different subsequent examiners may, with much difficulty, attempt to interpret the previous examiner notations. This form of documentation is imprecise to say the least, and, in some areas, inaccurate, and is not compatible with electronic medical records. For several years, it has been possible to use photography to document much of the infant’s retina.5 We know from current management of diabetic retinopathy and macular degeneration, as well as other retinal diseases, that photographic documentation is far superior to any physician drawing.6-8

Given the very high success rates that are possible with the proper management of ROP, a new approach to screening in order to try and reduce misrepresentation and misinterpretation of data is extremely important. The medical malpractice awards in retinopathy of prematurity have captured the attention of doctors, hospitals, the American Academy of Ophthalmology, peer-reviewed journals, and insurance companies.9-11 All of these groups are looking for a mechanism to provide the best possible care for each infant, while providing protection for the doctors and hospitals who administer that care. In order to supply this care, there must be a thoroughly reviewed ROP screening system that is reproducible and well documented. This system can supply a safety net for ROP management - a safety net that benefits the infant, the physician, and the hospital, as well as insurance companies. The system should have three core components: (1) hospital participation, (2) photographic documentation with appropriate image management, and (3) parental participation. Two of these components are discussed in this paper.

Hospital Participation
In order to maintain a hospital’s neonatal intensive care unit (NICU), the hospital must provide appropriate ROP screening. Currently hospitals request ophthalmologists on their staff to screen infants, usually via a bedside examination. These ophthalmologists may be from any specialty within ophthalmology and may or may not have acquired the necessary experience in regards to retinopathy of prematurity. The analogy of any ophthalmologist performing ROP screening may or may not be familiar with the most up-to-date ROP information. The medical malpractice awards in retinopathy of prematurity have captured the attention of doctors, hospitals, the American Academy of Ophthalmology, peer-reviewed journals, and insurance companies.9-11 All of these groups are looking for a mechanism to provide the best possible care for each infant, while providing protection for the doctors and hospitals who administer that care. In order to supply this care, there must be a thoroughly reviewed ROP screening system that is reproducible and well documented. This system can supply a safety net for ROP management - a safety net that benefits the infant, the physician, and the hospital, as well as insurance companies. The system should have three core components: (1) hospital participation, (2) photographic documentation with appropriate image management, and (3) parental participation. Two of these components are discussed in this paper.

Hospital Participation
In order to maintain a hospital’s neonatal intensive care unit (NICU), the hospital must provide appropriate ROP screening. Currently hospitals request ophthalmologists on their staff to screen infants, usually via a bedside examination. These ophthalmologists may be from any specialty within ophthalmology and may or may not have acquired the necessary experience in regards to retinopathy of prematurity. The analogy of any ophthalmologist performing ROP screening may or may not be familiar with the most up-to-date ROP information. The hospital should demand that the ophthalmologist involved in ROP screening for their NICU demonstrate that they have the appropriate skill set necessary to perform ROP screening.

“Retinopathy of prematurity (ROP) management has progressed greatly over the last decade and a half now yielding an anatomic success rate of greater than 98%.1-3 Much of this success, however, is based on the timely and accurate screening of infants at risk for retinopathy of prematurity”
In order to aid the screening ophthalmologist, the hospital must supply the necessary equipment for documentation. The best documentation for ROP screening is undoubtedly photography. Photography requires personnel capable of capturing adequate images for interpretation. The preferred personnel are the NICU nurses who are already comfortable handling these fragile neonates. In addition, the hospital must supply equipment that allows the uploading of these digital images to a secure website on the internet for viewing. Finally, the parents should be required to sign a document before hospital discharge stating that they realize that their infant can become blind from ROP if follow-up visits are missed. Also, the hospital should make the first follow-up appointment for the infants.

Photographic Remote Image-Managing System

FocusROP is a remote image-managing software program located on the website www.focusrop.com as shown in Figure 1. It is HIPPA compliant, and allows the secure transfer of images from the NICU to a primary certified FocusROP reader. This reader has undergone an educational program as shown in Figure 2, and certification examination as shown in Figure 3 through the website to assure that they are familiar with the most up-to-date ROP information. This certification is done every two years to keep the examiner current. Training and certification are also necessary for the nursing staff obtaining and uploading the images. The software program allows the primary reader, who is notified by text message as shown in Figure 4 that images are available for reading. The reader then is able to securely enter the website as shown in Figure 5 and use an algorithm contained within the software program combined with recommendations based on the most up-to-date ROP studies to process the images as shown in Figure 6. These recommendations couple both photographic documentation, as well as bedside examination, to achieve the highest level of ROP care. This image-management program allows the reader to return a report to the hospital that provides photographically the circumstances of each eye and recommendations for the subsequent examinations. The reader cannot change the recommendations of the algorithm mentioned above, which is important in the safety net. Inappropriately long periods of time between examinations in the NICU and delay in examinations after...
transfer of care from the NICU may lead to future litigation and can be avoided with this program.11,14 The images can also be compared side-by-side to previous examinations. This allows absolute documentation of interval change and provides the infant with the most up-to-date examination schedule. In addition, this report can be printed or seamlessly entered into an electronic medical record and is stored in an off-site image area available for 22 years. The algorithm never tells the doctor/reader that treatment is necessary as the decision for treatment is left to the doctor’s best judgment. The program instead mandates a bedside examination. In addition, if the primary reader has a challenging case, there is a mechanism for them to seek the advice of an expert of their own designation. All of the participants, the NICU, the primary reader, and the expert reader are notified by text message of the available images to be read or that they have been read. The readings can be performed and returned to the hospital in several hours time even from any device connected to the Internet as shown in Figure 7. This speed and efficiency is important due to the potential rapid progression of retinopathy of prematurity.15 The images that are captured at the bedside can be helpful in terms of NICU personnel and house staff education, as well as parental understanding of the severity of retinopathy of prematurity and the need for treatment or frequent follow-up care.

Using these core components, a safety net for ROP management can be achieved, leading to a system in which no infant falls through the cracks, missing the opportunities of treatment that can yield extremely highly successful anatomic results.

References

“Using these core components, a safety net for ROP management can be achieved, leading to a system in which no infant falls through the cracks, missing the opportunities of treatment that can yield extremely highly successful anatomic results.”

Figure 6. This example of the report sent to the hospital can be printed or entered into an electronic medical record.

Figure 7. The certified reader can access the images available for reading on a computer or cellular phone connected to the internet.

Do you or your colleagues have interesting research results, observations, human interest stories, reports of meetings, etc. that you would like to share with the neonatology community?

Submit your proposed article to RichardK@Neonate.biz

The final manuscript may be between 400-4,000 words, and contain pictures, graphs, charts and tables.

Corresponding Author
Michael T. Trese, MD
Associated Retinal Consultants, P.C.
Royal Oak, MI USA

Please send all correspondence to c/o Shae Reber, COA, CRA
435 Devon Park Dr, Bldg 100
Wayne, PA 19087 USA
Phone: 610.955.5995
sreber@focusrop.com

Antonio Capone, Jr., MD
Associated Retinal Consultants, P.C.
Royal Oak, MI USA

Kimberly A. Drenser, MD, PhD
Associated Retinal Consultants, P.C.
Royal Oak, MI USA

© 2010 by Neonatology Today
ISSN: 1932-7129 (print); 1932-7137 (online). Published monthly. All rights reserved.

Publishing Management
Tony Carlson, Founder & Senior Editor
TCarlsonmd@gmail.com
Richard Koulbanis, Publisher & Editor-in-Chief
RichardK@Neonate.biz
John W. Moore, MD, MPH, Medical Editor/Editorial Board
JMoore@RCHSD.org

Editorial Board
Dilip R. Bhatt, MD
Barry D. Chandler, MD
Anthony C. Chang, MD
K. K. Diwakar, MD
Philippe S. Friedlich, MD
Lucky Jain, MD
Patrick McNamara, MD
David A. Munson, MD
Michael A. Posencheg, MD
DeWayne Pursley, MD, MPH
Joseph Schulman, MD, MS
Alan R. Spitzer, MD
Dharmapuri Vidyasagar, MD
Leonard E. Weissman, MD
Stephen Welty, MD
T.F. Yeh, MD

FREE Subscription - Qualified Professionals
Neonatology Today is available free to qualified medical professionals worldwide in neonatology and perinatology. International editions available in electronic PDF file only; North American edition available in print. Send an email to: SUBS@Neonate.biz. Include your name, title(s), organization, address, phone, fax and email.

Contacts and Other Information
For detailed information on author submission, sponsorships, editorial, production and sales contact, send an email to:
INFO@Neonate.biz.

To contact an Editorial Board member, send an email to: BOARD@Neonate.biz putting the Board member’s name on the subject line and the message in the body of the email. We will forward your email to the appropriate person.

Sponsorships and Recruitment Advertising
For information on sponsorships or recruitment advertising call Tony Carlson at 301.279.2005 or send an email to RECRUIT@Neonate.biz.

Meetings, Conferences and Symposiums
If you have a symposium, meeting or conference, and would like to have it listed in Neonatology Today, send an email to: MEETING@Neonate.biz. Include the meeting name, dates, location, URL and contact name.

Corporate Offices
9008 Copenhaver Drive, Ste. M
Potomac, MD 20854 USA
Tel:+1.301.279.2005; Fax:+1.240.465.0692

Editorial and Subscription Offices
16 Cove Road, Ste. 200
Westerly, RI 02891 USA
www.NeonatologyToday.net
A Neonatology Practice Management Group

Here We Grow!
The warmth of a close collegial group practice with the strength of a national organization.

ENTER TO WIN a DELL
Red 10.1 Inspiron Mini 10v Netbook

VISIT US
PAS
Vancouver, Canada May 1-4, 2010
BOOTH # 210

800.816.6791
neonatology@sheridanhealthcare.com
www.sheridanhealthcare.com

Sheridan includes Sheridan Healthcare, Inc., its subsidiaries, affiliates and managed entities.

Every patient has unknown clinical variables. Let the INVOS® System help you reveal them. This gentle cerebral/somatic oximeter non-invasively monitors regional oxygen saturation (rSO₂) changes in the brain, renal area, abdomen and other specific sites. Its real-time data enhances detection and response to oxygen threats such as those related to low cardiac output, renal dysfunction, neurologic damage, shock, gut ischemia and seizures. It also reflects the impact of interventions, so you can assess efficacy and next steps before problems escalate.

Reveal new insights with the INVOS System.

My gut ischemia was discovered early with the help of rSO₂.

Continued innovation in NIRS data...via Vital Sync.™ Enhance patient assessment by having all critical patient data at your fingertips, in a format you define. Whether for bedside care or research data aggregation, let Vital Sync technology cut through the complexity.

www.somanetics.com | 800.359.7662